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ABSTRACT
In this paper, we study how a sensor-rich world can be exploited by
digital recording devices such as cameras and camcorders to im-
prove a user’s ability to search through a large repository of image
and video files. We design and implement a digital recording sys-
tem that records identities and locations of objects (as advertised by
their sensors) along with visual images (as recorded by a camera).
The process, which we refer to assensor-enhanced video annota-
tion (SEVA), combines a series of correlation, interpolation, and ex-
trapolation techniques. It produces a tagged stream that later can be
used to efficiently search for videos or frames containing particular
objects or people. We present detailed experiments with a proto-
type of our system using both stationary and mobile objects as well
as GPS and ultrasound. Our experiments show that: (i) SEVA has
zero error rates for static objects, except very close to the boundary
of the viewable area; (ii) for moving objects or a moving camera,
SEVA only misses objects leaving or entering the viewable area by
1-2 frames; (iii) SEVA can scale to10 fast moving objects using
current sensor technology; and (iv) SEVA runs online using rela-
tively inexpensive hardware.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing; H.3.3 [Information Storage and Retrieval]: In-
formation Search and Retrieval; H.5.1 [Information Interfaces
and Presentation (e.g., HCI)]: Multimedia Information Systems–
Video

General Terms
Algorithms, Design, Experimentation

Keywords
Video Annotation, Sensor-enhanced, Location-based Services, Context-
based Retrieval

1. INTRODUCTION
Advances in consumer electronics technologies have led to a pro-
liferation of digital cameras and camcorders that record images and
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video in digital form and enable easy manipulation of this data on
laptops and desktop computers. This trend, coupled with the in-
creasing capacities of PC hard drives, has encouraged users to cre-
ate ever-larger personal libraries of pictures and movies. Navigat-
ing through collections containing tens of thousands of pictures and
hundreds of movies requires tools to quickly search and locate con-
tent of interest. A concurrent trend is the emergence of numerous
sensor technologies such as RFID [11] and low-power sensors [27].
In the future it is likely that many objects will be equipped with
sensors that encode their identities. For instance barcodes on ob-
jects such as books and food will be replaced with RFID sensors
that serve as electronic tags. Street signs, buildings, and popular
locations might be equipped with active sensor beacons that elec-
tronically broadcast their addresses. Another trend is the ubiqui-
tous deployment of positioning technologies such as GPS [2] and
ultrasound [33] that triangulate the exact location of a user.
This paper proposes a new multimedia application that is enabled
by the confluence of these trends. In particular, we study how
a sensor-rich world can be exploited by digital recording devices
such as cameras and camcorders to improve a user’s ability to search
through a large repository of image and video files. We design and
implement a digital recording system that records identities and lo-
cations of objects (as advertised by their sensors) along with vi-
sual images (as recorded by a camera). The process, which we
refer to assensor-enhanced video annotation (SEVA), produces a
tagged stream that later can be used to efficiently search for videos
or frames containing particular objects or people.

Research Challenges
Numerous practical challenges arise in the design and implementa-
tion of SEVA.

• Mismatch in coverage and range:The SEVA recorder in-
cludes a video camera and a wireless radio to record images
and sensor data, respectively. Typically, the camera is a di-
rectional image sensor that captures a limited view of the
scene depending on where the lens is pointing. In contrast,
the wireless radio antenna is an omnidirectional device and is
able to listen to sensors that are outside the viewable area of
the camera. This can result in false positives since the radio
may record objects that do not actually appear the captured
image. Even with a directional antenna, it is difficult to pre-
cisely match the coverage of the radio and the lens; focus
and zoom-capabilities of lens further complicate the issue.
Similarly, the lens can capture images of objects that are in-
finitely far from the camera (e.g., a distant building), while
the wireless radio has a limited range and is unable to record
identities of object that are outside its range. This results in



false negatives where objects that are in the view of the cam-
era are unable to report their identities to the wireless radio.

• Mobility: Mobile objects and a moving camera causes ob-
jects to move in and out of the field of view. SEVA must
correctly identify which frames contain a particular object
with a high degree of accuracy.

• Limitations of power-constrained, bandwidth-poor sen-
sors: Sensors attached to objects are either battery-powered
or passive. Due to power-constraints, battery-powered sen-
sors aggressively duty-cycle and use sleep modes to enhance
their lifetimes. Passive sensors such as RFID tags do not have
a power source and instead are powered by the electromag-
netic signals from the wireless radio. Further, both battery-
powered and passive sensors use low-bandwidth wireless chan-
nels for communication. While a video camera can record at
a rate of 30 frames/second, due to the resource constraints
on sensors it is not feasible for the wireless radio to query
all objects every 33ms. Thus, sensors will respond less fre-
quently than the intra-frame duration, necessitating extrapo-
lation techniques to annotate every frame.

• Limitations of positioning systems: SEVA requires a high
degree of positioning accuracy in order to properly identify
viewable objects. Unfortunately, the current current genera-
tion of positioning systems provide limited accuracy. For in-
stance, current GPS technology provides accuracy of 3-100
meters [2], while handling moving objects in ultrasound has
inherent problems [35]. SEVA must deal with the error that
is introduced as a result of these limitations.

The primary contribution of our work is to demonstrate the fea-
sibility and benefits of using sensors and locationing systems to
automatically annotate video frames with the identities of objects.
Our work has resulted in a number of novel techniques that are
specifically designed to address the above practical hurdles.
The mismatch in range and coverage of sensors is handled using
a combination of extrapolation and filtering. In particular, false
positives are eliminated using elementary optics and filtering tech-
niques, while false negatives caused by a visible object that moves
out of radio range are handled using path extrapolation. To address
the issue of mobile objects as well as a moving camera, we draw
upon the regression techniques to determine the path of a mobile
object and its location. To address the issue of resource-constrained
sensors, we employ interpolation techniques to determine if an ob-
ject is within range even if it did not respond to a query when the
frame was captured. Finally, buffering and filtering are used to han-
dle some, but not all, of the inaccuracies of positioning systems.
These techniques enable a fully working prototype of SEVA. We
conducted detailed experiments using both stationary and mobile
objects as well as GPS and ultrasound. Our experiments show that:
(i) SEVA has zero error rates for static objects, except very close
to the boundary of the viewable area; (ii) for moving objects or a
moving camera SEVA only misses objects leaving or entering the
viewable area by 1-2 frames; (iii) the SEVA prototype can scale to
10 fast moving objects using current sensor technology; and (iv)
SEVA runs online using relatively inexpensive hardware.
The rest of this paper is structured as follows. We present back-
ground and assumptions in Section 2. Section 3 presents the design
of SEVA. We present implementation details in Section 4 and our
experimental results in Section 5. We present the applications and
potentials of SEVA in Section 6. Section 7 and 8 present related
work and our conclusions.

2. SYSTEM MODEL
In this section, we present the key assumptions made in our work.
SEVA assumes a world rich in sensors—we believe that, in the fu-
ture, sensors will be pervasive, and most objects will be equipped
with one or more sensors. Not all objects fall into this category—
natural objects such as trees and mountains may not be sensor-
enhanced and annotation requires techniques that are beyond the
scope of this paper. In general, sensors on objects will be hetero-
geneous and will be based of a mix of technologies such as RFID,
Bluetooth, Zigbee, and 802.11. Consequently the recording device
will need a radio to interact with each type of sensor. For reasons
of simplicity, our current work assumes a homogeneous sensor en-
vironment and assumes a recorder with a single wireless radio; it is
straightforward to extend our prototype to handle heterogeneity.
We assume that all sensors report their identities as well as their lo-
cations when queried. For stationary objects such as a building or a
street sign, the precise location can be hard-coded at sensor config-
uration time. To handle mobile objects as well as those that do not
hard-code their locations, we assume the presence of a positioning
system. In this work, we consider two types of positioning sys-
tems: GPS and an ultrasound system named Cricket [35]. GPS is
an outdoor positioning system that relies on satellites, and Cricket
is an indoor system based on ultra-sound beacons. For passive sen-
sors such as RFID we assume that they store their current coor-
dinates and are reprogrammed using emerging RFID triangulation
techniques [20, 31].
We also assume that the recording device incorporates four key ele-
ments: (i) a video camera, (ii) a digital compass, (iii) a locationing
system, and (iv) a wireless radio. The camera is simply a digital
recording device that captures video frames and the associated au-
dio. We assume that the parameters of the lens used in the camera
are precisely known. This is a reasonable assumption since these
parameters are published or advertised for most models of digital
cameras and camcorders. The digital compass is used to determine
the direction where the camera is pointing at any instant; we use
a 3D digital compass that precisely provides both the orientation
and the tilt of the camera. The camera is also assumed to equipped
with GPS and Cricket so that it can determine its coordinates both
indoors and outdoors. Together, the positioning device and the 3D
Compass, in conjunction with the lens parameters, are used to de-
termine which part of the scene can be seen by the camera. This
automatic computation of the visual range of the camera is used to
determine which objects are in view and which ones are false pos-
itives. Finally, the wireless radio is used to query objects for their
identities and locations.
In addition to recording video, the SEVA recorder is assumed to
log (i) the orientation and tilt of the camera for each frame, (ii) the
GPS and/or Cricket coordinates of the camera for each frame, (iii)
a GPS time stamp for each frame, and (iv) the identities and the
locations of each queried object and the time when the response
was received.
Assuming such an environment, we present the architecture, de-
sign and implementation of oursensor-enhanced video annotation
(SEVA)application in the following sections.

3. SYSTEM ARCHITECTURE AND DESIGN
SEVA captures a stream of sensor data and a video stream and fuses
them together in a series of stages. Each step requires careful fil-
tering and melding of object location, object identification, camera
positioning, and lens parameters. SEVA is capable of feeding this
annotated stream of video into a database for offline querying or



to a streaming query system. This process is broken into six key
stages:video recording, pervasive location/identification, correla-
tion, extrapolation and prediction, filtering and elimination, and
finally database querying. Next, we describe these stages in detail.

3.1 Video Recording
SEVA provides a video recording module that receives video input
and camera parameters from any video source. The source must
provide frames at a constant and known frame rate, or it must time
stamp each frame. This allows later stages to synchronize location
information with individual frames. The camera must also supply
a set of lens parameters to the recording module: the sensor size
and the lens focal length. For lenses with fixed focal lengths—so
called prime lenses—the focal length will not change from frame
to frame. However, SEVA is also capable of handling zoom lenses
with variable focal lengths.

3.2 Pervasive Locationing/Identification
SEVA collects information about the location and identity of prox-
imate objects. This depends on a pervasive infrastructure that re-
sponds to broadcast messages from SEVA through a wireless net-
work. Any objects within wireless range respond with information
about their identity, including properties of the object.
Such infrastructures have been proposed for a broad array of sys-
tems [18, 23, 24, 34] and future systems may use a variety of tech-
nologies and standards. SEVA is designed to be independent from
the exact technological implementation so here we only describe
an abstract set of properties that SEVA depends on.
The pervasive locationing and identification shown in Figure 1 pro-
duces the sensor stream used by later stages of SEVA. The system
is organized as a set of modular layers: locationing, network, pri-
vacy, querying, and location mapping:

Camera

Pervasive Locationing/
Identification

Network 
(RFID, WiFI)

Locationing 
(Ultrasound, 
GPS, Wifi)

Privacy Layer

Querying

Location Mapping Sensor 
Stream

Object

Locationing 
(Ultrasound, 
GPS, Wifi)

Querying

Network 
(RFID, WiFI)

Privacy Layer

Figure 1: Pervasive Locationing/Identification System.

The locationing layer provides location information to the objects
as well as the camera. The locationing system can be active, pas-
sive, or static. Active systems, such as active ultrasound, beacon
to the infrastructure, which responds with a location. Passive sys-
tems, such as GPS, can compute locations with no transmission and
only passive observations of radio signals. Static systems use a pro-
grammed location. Active and passive systems are best for objects
that move, such as people and automobiles, whereas static systems
are only appropriate for immobile objects such as buildings and
landmarks. As we show in the evaluation section, the accuracy of
these systems is critical to SEVA’s efficacy.
The network layer provides communication between the camera
and objects. As long as the interface supports broadcasting, send-
ing, and receiving, the particular technology used (WiFi, Bluetooth,
Zigbee, RFID) is immaterial. The range of the communication
should be sufficient to capture most objects within camera range;
however, too great of a range will affect the scalability of the sys-
tem. The limited range does mean that large, distant objects such as

mountains will not be captured by the identification system—future
SEVA mechanisms will support this feature through GIS informa-
tion.
A privacy layer ensures that objects can control their own visibility.
While a complete implementation of such a system is beyond the
scope of this paper, the privacy layer should permit people to pro-
vide varying levels of information. For instance a person will pro-
vide her name to her friend’s camera, whereas she will only provide
meta-information such as “a person” to an untrusted camera.
The querying layer manages interactions between the camera and
the objects. The camera broadcasts query messages to objects,
which respond with identifying and location information, as shown
in Figure 2.

Boundary of wireless range

(b) Response

Boundary of wireless range

(a) Query

Requestor

Broadcast Query

Requestor

Response Response

Response
Response

Responder

Responder

Responder Responder

Figure 2: Query and Response Model.

The locationing mapping layer maps different object locations to a
frame of reference relative to the camera. Therefore, SEVA can still
compute visibility even when different objects may use different
locationing systems, and enable interoperability across locationing
systems.

3.3 Stream Correlation
The sensor stream needs to be time synchronized with the video
stream in order tocorrelate the location information in the for-
mer with specific frames in the latter. Unfortunately, transmission,
contention, and processing delays cause location information to be
desynchronized with the video.
Depending on whether sensors are active or passive, correlation can
be done in two ways. A straightforward implementation assumes
a synchronized clock present at each object—SEVA uses GPS re-
ceivers, cellular phone references, or NTP-based time sources. If
the sensor does not have a clock (e.g., RFID) or lacks resources to
run a synchronization protocol, then instead of a time stamp, it pro-
vides an estimate of the time from query to response. This includes
MAC layer delays and internal processing. The recorder subtracts
this delay from the receipt time of the response and assigns the
corrected time stamp to the sensory information (propagation de-
lays are assumed to be negligible). By performing this correlation,
SEVA associates each query response to the appropriate frame.

3.4 Extrapolation and Prediction
Some per-object, per-frame location information will be missing
from the correlated sensor stream. This is due to two factors. First,
sensors duty-cycle to maximize their battery lifetime and will re-
spond to queries only when awake. Broadcast requests will be sent
out every frame duration (e.g., every 33ms for 30 frames/s video)
while sensors may sleep for tens or hundreds of milliseconds be-
tween two wakeups. Second, it is unlikely that the network layer
can scale its MAC protocol to the number of awake objects (due to
the possibility of MAC layer collisions). In that case the individual
objects must randomly ignore broadcast requests.
SEVA explicitly deals with both of these scenarios by assuming
that each query will obtain responses from only asubsetof the ob-
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Figure 3: Deriving an object’s path using curve fitting.

jects within radio range and employs post-processing techniques to
account for missing responses. Depending on whether the objects
and the camera are stationary or mobile, such interpolation is done
as follows:
Static objects: If the objects and the camera are static, extract-
ing missing information is straightforward: we simply copy the re-
ported location of the object to intermediate frames. In particular,
if the object responds to queries at timet1 andt2 and reports the
same location for both queries this location is tagged for all frames
captured between times[t1, t2].
Mobile object: Next we consider a mobile object and a station-
ary camera—determining missing location information in this case
requires a motion model. In particular, the module needs to ex-
tract determine the path (trajectory) of the object as a function of
time. The location of the object at any instant can be then easily be
determined.
SEVA uses regression techniques [6] to derive a smooth curve through
the reported coordinates, which is then assumed to be the path
taken by the mobile object. Assume that the object has responded
to n queries. Suppose that the reported locations are(x1, y1, z1),
(x2, y2, z2), . . . (xn, yn, zn) at timest1, t2, . . . tn. If n = 2 then
only two locations are known, and this technique reduces to a straight
line between the two reported locations. Whenn > 2, regression
attempts to fit a curve through the reported points. Since the fit is
not exact, the curve that yields the least error can be chosen. See
Figure 3 for an example.
Our regression technique systematically triesn−1 different curves
for the best fit: linear, a 2nd degree polynomial, 3rd-degree and so
on. The polynomial can have a degree of up ton − 1 for n known
locations. The coefficients of each polynomial function are then
determined using the least squares method [6]. Finally, a coeffi-
cient of determination is computed, which quantifies the goodness
of the fit. The polynomial with the highest coefficient of determina-
tion is chosen; if all polynomials report determination coefficients
less than a threshold, then the path of the object is too erratic to be
approximated by a smooth curve. In this case, we simply assume
that the object moves in a straight line between two successive re-
ported locations (i.e., approximate the path as a sequence of linear
segments).
Since the objects reports X-axis coordinates ofx1, x2, . . . xn at
timest1, t2, . . . tn, respectively, the regression analysis yields ak-
degree polynomial,1 ≤ k ≤ n − 1 that represents its location
along the X-axis as a function of time:

X(t) = a0 + a1t + a2t
2 + . . . + aktk (1)

wherea0, a1, . . . ak denote the coefficients as determined by the
least squares method. Similarly, the location along the Y and the
Z-axis as a function of time is obtained:

Y (t) = b0 + b1t + b2t
2 + . . . + bktk (2)

Z(t) = c0 + c1t + c2t
2 + . . . + cktk (3)

Together, the functionsX(t), Y (t) andZ(t) enable us to determine
the X, Y and Z coordinates of the object for any time instantt
between[t1, tn]. Thus, the missing location information can be
determined for every intermediate frame.
Mobile camera: The final scenario is one where the camera itself
is mobile; objects can be stationary or mobile. One approach to
handle this scenario is to consider a frame of reference relative to
the camera. In this frame of reference, the camera becomes station-
ary and the reported location coordinates of objects are translated to
this new frame of reference. Doing so reduces this scenario to the
previous case of mobile objects and a stationary camera. However,
this can yield errors, since a stationary object seen by a moving
camera now becomes a mobile object relative to the camera. Sim-
ilarly, in this frame of reference simple paths of objects (e.g., an
object moving in a straight line) now become more complex trajec-
tories.
Consequently, rather than considering locations that are relative to
the camera, SEVA considers theabsolutelocations of both the cam-
era and the objects and uses intelligent filtering techniques to ac-
count for the motion of both entities. In particular, SEVA considers
the actual reported locations of objects and determines a trajec-
tory of the object using regression techniques as explained above.
The SEVA recorder is assumed to log the location of the camera
for every single frame; since fine grain location information for the
camera is already available, no interpolation is necessary.
Extrapolation: Our regression technique enables us to interpolate
the location of an object given its path for an interval[t1, tn]. How-
ever, this does not yield any location information for frames cap-
tured before timet1 and those captured after timetn. This is useful
when an object goes out of the range of the wireless radio but re-
mains in view of the camera (e.g., an object that is steadily backing
away from the camera). Once the object leaves the wireless radio
range its presence is no longer detected yielding false negatives.
The trajectory computed by the regression analysis can be used to
extrapolate this information and annotate a small number of frames
beforet1 and aftertn. Extrapolation of the path beyond the inter-
vals [t1, tn] enables us to eliminate some of these false negatives.
This extrapolation can be done only for a few frames (e.g., for a few
seconds) in order to reduce errors caused by a change in trajectory
after the object leaves the wireless range. Currently, our prototype
uses a configurable parameter to determine the number of frames
for which location information is extrapolated beyond the[t1, tn]
interval.

3.5 Filtering and Eliminating
After the extrapolation and prediction stage, every video frame has
been annotated with object location information and SEVA must
now determine which objects are within the camera’s field of view.
For each frame SEVA constructs a field of view based on an op-
tics model, the camera’s focal length, and parameters of the cam-
era’s sensor. As shown in Figure 4, letf denote the focal length of
the lens and lety denote the height of the CMOS sensor of digital
camcorder. This implies that the camcorder has a viewable angle
α = 2tan−1 y

2f
. At a distanced from the lens, the camera can see

a view that ish = f
d
·y. So if the object is withinh

2
of the camera’s

axis, it is considered in view, otherwise it is out of view. In Figure
4, the objectA is in the view and objectB is out of view. Although
the figure only shows a one dimensional model, it easily extends
to three dimensions. Using this model, combined with the location
information, SEVA determines which objects are in the view of the
camera.
This model does not take obstructions into account and SEVA will
believe that some objects that are hidden by walls are actually vis-
ible. One possible solution is to use the calculated distance with
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Figure 5: SEVA recorder laptop equipped with a camera, a
3D digital compass, a Mote with wireless radio and Cricket re-
ceiver, a GPS receiver, and 802.11b wireless.

radio power control and a free-space communications model to es-
timate whether the object is obstructed. Similarly the object may be
out of focus and therefore not visible. Some cameras have variable
apertures and optics can then provide a measurement of the depth-
of-field of the image. This allows us to compute whether objects
are in or out of focus and tag them appropriately. SEVA does not
include either of these mechanisms yet.

3.6 Query and Retrieval
This module consists of a storage system for annotated video and
tools for query and retrieval. The storage system stores videos and
corresponding annotations separately; the annotations and videos
are synchronized and linked by the video’s frame index; the loca-
tion information in the annotations is translated into user-readable
format (e.g., CS Building, Room 101). A tool allows users to query
and retrieve videos of interest. Queries can specifywhena video
was captured,whereit was captured, andwho is in the video. The
search engine then searches video annotations produced by SEVA
and returns the videos’ frame indexes satisfying the query. Finally,
the returned frame indexes can be used to retrieve video clips from
storage.

4. IMPLEMENTATION
To provide a test platform, we have constructed a prototype system
based on a Sony Motion Eye web-camera connected to a Vaio lap-
top. The location and identity querying, correlation, extrapolation
and prediction, filtering and elimination, and database storage soft-
ware runs on the laptop. SEVA currently uses two 3-D locationing
systems for the camera and objects: GPS and the Cricket Ultra-
sound locationing system. To obtain the orientation of the camera
we augmented the laptop with a Sparton SP3003D Digital Com-
pass that provides the orientation (heading, pitch, and roll) of the
camera’s lens.

Video Recording.The CMOS-based camera provides uncompressed
320x240 video at12 frames-per-second. The camera has been
set to a fixed focal length of2.75mm, and uses a sensor size of
2.4mm by 1.8mm. The video recording module uses an MPEG
encoder(ffmpeg0.4.8 [10]) to record video.

Pervasive Location/Identification. Outdoors, SEVA uses Deluo
GPS receivers equipped with WAAS correction [5], connected to
the laptop to locate the camera and the object. The GPS unit pro-
vides latitude, longitude, and altitude, and it provides an accuracy
of 5-15 meters [5].
Indoors, SEVA employs an ultrasound locationing system called
Cricket [33]. Using a network of ultrasound sensors built onto sen-
sor boards, Cricket can provide 3-D locations with an accuracy of
a few centimeters. Cricket can be used in two modes: active and
passive. In the current implementation, SEVA uses the active mode
as it is more accurate. In the future SEVA will use the passive mode
as it scales to a larger number of objects.
The pervasive locationing and identification system uses two differ-
ent network layers to communicate with the objects. Outdoor ob-
jects are laptops equipped with WiFi and indoor objects are Mica2 [21]
low-power sensor boards equipped with 900 MHz short-range ra-
dios. The laptop communicates with the objects using a sensor
board of the same type. A simple broadcast-based query protocol
is implemented between the Linux-based recorder and the Mica2
nodes.

Correlation. As GPS provides a globally synchronized clock among
GPS receivers, we use this clock to correlate the location informa-
tion with specific frames. Since Cricket system doesn’t provide
such a globally synchronized clock, SEVA simply correlates the
location information with specific frames by subtracting the mean
processing and MAC layer delay from the receiving time of sensor
data and assigning the corrected time stamp to the sensory infor-
mation.

Extrapolation and Prediction. As discussed in Section 3.4, we
use regression analysis to find the mathematical relationship be-
tween location and time. Because the camera’s 3D orientation will
affect the result of filtering and elimination, we also apply regres-
sion analysis to the camera’s 3D orientation.

Filtering and Elimination. In this stage, objects’ coordinates are
transformed into a coordinate system with camera as the origin.
This transformation is straightforward for the Cricket system since
we can easily subtract the camera’s coordinate from objects’ co-
ordinates. The transformation for GPS system requires computing
the distance between camera and object, and we use the GPS Drive
package for this purpose [17].

Indexing and Querying. The results of filtering and elimination
are inserted into a MySQL database, while the videos are stored in
the the laptop’s file system. Before SEVA adds annotations to the
database, the outdoor GPS position (e.g., latitude, longitude, and
altitude) is translated into user-readable format (e.g., parking lot
45, UMass) viageocoder[15], and the indoor Cricket location is
translated into user-readable format (e.g., CS Building, Room 101)
by extracting a user-readable location from the Cricket system. For
each video there is an entry in the database recording its start time
and end time; for every frame in a video there is an entry in the
database recording its shooting time and location; and for every
annotation there is an entry in the database containing the object
identity and index of the corresponding video frame.
We have also implemented a simple GUI retrieval tool for content-
aware queries on this database. This tool supports queries onwhere
the video was captured (e.g., CS Building, Room 101),whenit was
captured (e.g., morning of May 23, 2005), andwho is present in
the video (e.g., car, book, building) and retrieves the indexes of
all annotated frames that match this query. Finally, these frame
indexes are used to retrieve frame sequences from videos.



5. EXPERIMENTAL EVALUATION
In evaluating SEVA, we set out to answer the following questions:

• How accurate is SEVA in tagging frames with a moving cam-
era, moving objects, and with different locationing systems?

• How well does SEVA scale to larger numbers of objects?

• What is the overhead in using SEVA?

To answer these questions we used three different locationing sys-
tems: the Cricket ultrasound system, GPS, and static locationing.
We setup the Cricket locationing system in a4m x 10m x 3m room
with five Cricket receivers mounted on the ceiling that serve as
the reference points for object and camera locationing. The ori-
gin of the coordinate system is one of the corners of the room
and the range of x, y and z is[0cm, 400cm], [0cm, 1000cm], and
[0cm, 300cm], respectively. Our GPS experiments were conducted
in a large parking lot with a clear view of the southern horizon. As
the altitude did not vary significantly for object and camera posi-
tions, we did not use it in any of our experiments. The camera
records all video at 12 frames/s.
To determine SEVA’s accuracy in tagging frames, we subject the
system to four experiments: a) the object and camera are both
static, b) the object is moving in a straight line and the camera is
static, c) the camera is moving in different patterns and the objects
are static, and d) the object is moving with semi-random trajecto-
ries and the camera is static. In these experiments, we place the
object in different positions—some inside the view of camera and
some outside the view of camera—and evaluate the error rate of our
system when determining the viewability of objects. We selected
the error rate or number of frames in error as the evaluation criteria.
An error occurs when SEVA tags a frame as containing an object
when it doesn’t (false positives), or it tags a frame as not containing
an object when it does (false negatives).
It is important to note that the objects that we are using to evaluate
the system are only a few square centimeters in size. In a sense
this represents a worst-case. Larger objects such as people may
have inaccuracies in the positioning information that is made up by
straddling the line between viewable and non-viewable. We leave
the issue of partially viewable objects as future work.

5.1 Static Object, Static Camera

5.1.1 Cricket Locationing System
To evaluate SEVA’s performance with static objects and a static
camera, we place an object at a large number of positions along
three different trajectories. The setup for this experiment is shown
in Figure 6. The camera is set up at(223, 350, 57) with its lens
pointing horizontally along the positiveY axis and having0◦ pitch
and roll. We place a single object (simply a Cricket node) at differ-
ent positions along the three trajectories:y = 550cm, y = 650cm
andx = 200cm. As most of the errors are made very close to
the viewability boundary, we took readings every2.5cm near the
boundary, and every5cm when the object was a least30cm from
the boundary.
For each object position we take100 frames and for each we record
the 3D orientation of the camera and the coordinates of the camera
and object. These coordinates are then fed into the SEVA system
and we manually reviewed SEVA’s results to evaluate the error rate
(false positive for non-viewable objects and false negative for view-
able objects). The results of this experiment are shown in Figure 7.
As shown in Figure 7(a) and 7(b), the error rate is less than20%
when the object is along the boundary, and the error rate quickly
drops to single digits when the object is only2.5cm away from the

Trajectory 3
(x=200cm,

z=3cm)

Trajectory 1
(y=550cm,

z=3cm)

Trajectory 2
(y=650cm,

z=3cm)

Camera
Position

(x=223cm, 
y=350cm,
z=57cm)

Figure 6: The layout of static experiments using Cricket.

Trajectory 
1: y=10m
2: y=20m
3: y=80m

Camera
Position
(x=0m, 
y=0m,
z=0m)

Figure 8: The layout of experiments using GPS.

boundary and to zero when it is only7.5cm away. One exception
occurs on Trajectory 2, and we get close to40% error rate when
the object is along the viewable boundary. We believe that this is
caused by interference with the ultrasound system from a nearby
structural pillar.
Figure 7(c) shows that the error rate along the viewable boundary
for Trajectory 3 is around50%, and it drops to zero percent when
the object is only10cm away from the boundary. The reason for
this larger error rate along the viewable boundary is that the mea-
sured location of the camera is5cm to 7cm lower than its real
position, and the measured location of the object is2cm to 3cm
higher than its real position in most cases. This type of error may
come from the arrangement of Cricket reference points’ position
and could possibly be corrected by a different arrangement.

5.1.2 GPS Locationing System
We conducted a similar experiment with a GPS locationing sys-
tem. GPS provides latitudes and longitudes relative to the equator
and prime meridian; however, for readability we translate this coor-
dinate system into (x, y) coordinates with the camera at the origin
and the camera pointing along the Y axis.
As shown in Figure 8, we used different positions along three tra-
jectories: y = 10m, y = 20m, andy = 80m. The positions
are separated by a3m step size starting30m from the viewable
boundary and ending at the the center of the field of the view. For
each position, we take100 pictures, and for each picture we record
the 3D orientation of the camera and the (x, y) coordinates of the
camera and object. We then manually verify that SEVA produces
the correct results and record the error rate (false positive for non-
viewable objects and false negative for viewable objects). The re-
sults are shown in Figure 9.
Our results show that SEVA has more than20% error rate when
the object is within15 meters from the boundary, and when the
distance to boundary is more than18 meters the error rate drops
to zero. The low performance is due to the low accuracy of GPS
(5-15m).

5.2 Dynamic Experiments
To evaluate SEVA’s extrapolation and prediction mechanisms, we
performed two sets of experiments: (i) mobile object with a sta-
tionary camera and (ii) stationary object with a mobile camera. The
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Figure 7: The error rate of static experiments using Cricket.
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Figure 9: The error rate of static experiments using GPS.

video clips were reviewed manually as before to determine which
frames had erroneous annotations.

5.2.1 Static Camera, Dynamic Objects
When the object is moving and the camera is static the critical fac-
tor affecting SEVA’s accuracy is the speed of the object relative to
how often SEVA updates the object location. If the object speed is
very high in relation to the object location, it will mis-extrapolate
the object position and make mistakes in tagging objects as in or
out of the field of view.
To explore this point we constructed two experiments: a repeatable
experiment using a straight-line trajectory, and a non-repeatable ex-
periment using a semi-random path.
Repeatable Experiment:To construct a repeatable experiment we
use an object moving at different speeds and updating its position
at different intervals. In order to make the experiments as repeat-
able as possible we designed a test apparatus. We hung a fishing
line across the camera’s field of view at an angle and attached the
object to a pulley (see Figure 10). When we release the object it
accelerates down the line and then stops at the bottom. We can
change the acceleration of the object by changing the gradient of
fishing line. We accelerated the object across the camera’s field of
view using three different slopes:7.6◦, 10.93◦, and19.47◦ and the
characteristics of these different slopes are shown in Table 1.
The object updates its position using the Cricket ultrasound system
and it can reliably update its position at most once every250ms. In
this experiment we used three different beacon intervals:250ms,
500ms, and1000ms.
For each slope and each beacon interval we encoded ten videos and
used SEVA to determine the object’s viewability of each frame.
We manually compared SEVA’s results with the original video on a
frame-by-frame basis and evaluate which frame tags were in error.
As before, incorrect decisions are made only when the object is
close to the viewable boundary. In these experiments that situation
occurs either when the object enters or exits the viewable area. The
large number of frames in these experiments would make the er-

pulley+
object

field of view

camera

Figure 10: Mobile object on a pulley.

ror rate appear very small, so instead of presenting an error rate,
we present the absolute number of frames that are in error. When
later querying the video for sequences including a particular object,
this metric determines how many extra or missing frames will be
included or excluded from the sequence. The result is taken over
the average of all ten experiments. We compare two systems: a full
version of SEVA and a version of SEVA that does not perform any
extrapolation. The results are shown in Figure 11.
The results demonstrate that without extrapolation the average num-
ber of frames in error increases from1.8 to 7.0 as the beacon inter-
val increases from250ms to 1000ms. The slower beacon interval
forces SEVA to use old measurements of the object’s position and
cannot correct for them using extrapolation. With extrapolation the
average number of frames in error is less than1 and is fairly con-
stant across beacon intervals.
The worst case occurs when the object is exiting the viewable area
under the highest acceleration and the beacon interval is the slow-
est. In this scenario the object leaves the viewable area at375cm/sec,
reaches the end of the wire, and suddenly stops. This rapid deceler-
ation causes the extrapolation method to fail and SEVA misplaces
the object at intervening frame intervals. Given a faster beacon
interval it is more likely that a beacon will occur after the object



Gradient Length AVG. Speed Time Length in Viewable Area AVG. Speed in Viewable Area Time in Viewable Area
Slope 1 7.6◦ 303cm 86.57cm/s 3.5s 150cm 112.06cm/s 1.34s
Slope 2 10.93◦ 350cm 145.83cm/s 2.4s 228cm 181.90cm/s 1.25s
Slope 3 19.47◦ 360cm 205.71cm/s 1.75s 240cm 271.77cm/s 0.88s

Table 1: Characteristics of different slopes.
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Figure 11: Mean frames in error for a mobile object and static camera.

Straight Line Rotation z Line
Slow 50cm/sec 25◦/sec 50cm/sec
Fast 80cm/sec 60◦/sec 80cm/sec

Table 2: Characteristics of different speeds.

leaves the viewable area, but before the object stops. This means
that two beacons straddle the exit from the viewable area and SEVA
extrapolates the position correctly.
Non-Repeatable Experiment: In the repeatable experiment, the
object moves in a straight line. Although this stresses SEVA’s ex-
trapolation system, it does not require higher-order regression anal-
ysis to determine the linear path. To test a more complex path we
recorded a new object: a remote control toy car with a Cricket node
attached to the top. We randomly moved the car around the room
for 5 minutes while recording the car with SEVA The car moved in
and out of the camera’s field of many times during the experiment
and we evaluated the performance in the same manner as before.
Our results show that the mean number of frames in error is 2. This
is only slightly larger than object moving in a straight line.

5.2.2 Dynamic Camera, Static Object
If the camera is moving, but the objects are static, SEVA must in-
terpolate the position as well as the orientation of the camera. To
test this function with a variety of movement patterns, we placed
4−5 objects separated by equal distance, and moved the camera in
three patterns as shown in Figure 12: (a)straight line, the camera
moves in a straight line without changing the orientation of the lens;
(b) rotation , the camera moves and the lens’ orientation changes;
(c) z-line, the camera moves in a z-shaped line without changing
its lens’ orientation. We evaluated SEVA’s performance using the
frame error metric as before. For each movement pattern we ran
experiments under two different speeds labeled slow and fast. The
characteristics of these speeds are shown in Table 2. In all cases we
used the full SEVA system with a location beacon interval250ms.
Again we only report the number of frames that are in error. The
results are shown in Table 3.
The results show that for the straight line the average number of
error frames, which is less than1.0, is comparable to when the
object is moving and the camera is stationary. When the camera
moves in a circle the average error frames is less than 2. We have
traced these errors to variances in the digital compass’s readings
when the heading changes and the latency of digital compass (up
to 100ms). When the camera moves in a z-line the average error
frames is around1.2. Although we don’t change the lens’ heading,

Object

Direction
Camera Moving

(c) z−Line

(a) Straight Line

(b) Rotation

Figure 12: Path of a mobile camera.

Straight Line Rotation z - Line
Slow 0.8 1.78 1.2
Fast 0.7 1.67 1.3

Table 3: Mean frames in error for a mobile camera.

SEVA’s interpolation fails when the camera makes a sharp turn,
slightly increasing the average number of error frames.

5.3 Scalability
As discussed in Section 3.2, the camera uses periodic broadcast
messages to query for nearby objects. If there are a large num-
ber of objects within radio range, the radio’s MAC layer may not
scale to handle a large number of simultaneous responses. To test
the scalability of our current prototype we video recorded a large
number of objects programmed with static locations.
To create a larger number of objects we used low-bit rate wireless
sensor nodes called Motes [21], specifically Mica2 and Mica2dots.
These nodes are representative of future object tags due to their
small size, low computational power and low energy consump-
tion. The Mica2 radio only supports a raw transmission rate of
19.2 Kbps, and the effective throughput is12.364 Kbps or42.93
packets/sec.
The scalability of the system is determined by the frequency at
which the camera sends queries relative to the number of objects
and the rate of messages the radio can handle. The maximum
packet rate is fixed so we constructed an experiment with a variable
number of objects and query frequencies. We measure the response
rate, which is the ratio of responses the camera got (we only con-
sidered responses that were at most one beacon behind) compared
to the number of objects. The results are shown in Figure 13.
The results show that the prototype can can achieve100% response
rate for up to4 objects under all beacon frequencies. It achieves
more than90% response rate for up to10 responders under all bea-
con frequencies. However the response rate for4 beacons/sec drops
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quickly and almost linearly with more than10 responders, and it is
72.3% with 15 responders and43.4% with 25 responders. The re-
sponse rates for1 beacon/sec and2 beacons/sec are almost the same
with up to20 responders, while the response rate of2 beacons/sec
drops quicker than the response rate of1 beacons/sec after that.
A combination of these results with those of the dynamic object
experiments indicate that the current prototype should scale well to
10 fast moving objects. If the environment includes a mix of fast
moving objects and slow moving objects, further scalability can be
achieved if slow moving objects respond less frequently to beacons.

5.4 Computational Requirements
We measured the computational requirements of SEVA’s stages.
The correlation and the extrapolation modules impose a small com-
putational overhead on the laptop (less than100µs for each object);
the filtering module imposes a200µs overhead for each object. Un-
like GPS systems, the Cricket sensor gives the distances to beacons
instead of 3D coordinates, thus the laptop must solve a set of lin-
ear equations to compute the the 3D coordinates. This computation
costs around150µs for each object. These results show that our
system incurs small overhead and will run online on relatively in-
expensive hardware.

5.5 Summary and Discussions
Our experiments show that: (i) using Cricket, SEVA has zero error
rates for static objects when the object is only 7.5-10cm away from
the boundary; (ii) using GPS, SEVA has more than20% error rate
when the object is within 15m from the boundary, and the error rate
drops to zero when the distance to boundary is more than 18m; (iii)
for moving objects or a moving camera SEVA only misses objects
leaving or entering the viewable by 1-2 frames (80ms/frame); (iv)
SEVA prototype can scale well to 10 fast moving objects using
current sensor technology.
SEVA’s performance and scalability are largely affected by the lim-
its of current sensor technology: (i) the larger error rate when using
GPS is due to the low accuracy (5-15m) of current GPS technol-
ogy; (ii) the low scalability (no more than 10 fast moving objects)
is due to the low bandwidth (19.2Kbps) of Motes. However, we ex-
pect these problems will be solved in the near future as the sensor
technology evolves: (i) SEVA using GPS or GPS-like technology
(Galileo) will have similar or comparable performance compared
to SEVA using Cricket in a few years as GPS is expected to reach
1-5m accuracy by the year 2013 with further improvements after
2016 [16], and Galileo is expected to reach less than 10cm accu-
racy (compared to 3-5cm accuracy in Cricket) by 2008 [12]; (ii)
SEVA can scale to ten times more fast moving objects as the newest
MicaZ mote has 250Kbps bandwidth [3].

6. APPLICATIONS OF SEVA
SEVA produces video streams tagged with metadata (e.g., when a
video was captured, where it was captured, and who/what is in the
video or frame) which can be used to efficiently search for videos
or frames. The availability of this metadata will be helpful for a
tremendous number of multimedia applications.
Two examples are sharing of personal videos and retrieval of life-
log videos—context-aware and content-aware organization of videos
are crucial for their success. SEVA’s annotations aboutwhen, where,
and who can be directly used to organize the videos in context-
aware basis. Furthermore, these annotations can be used to infer
the content of the videos and later organize the videos. For ex-
ample, a video taken on a person’s birthday with family members
present is very likely to be the video of a birthday party.
Object and face recognition use vision techniques to find particu-
lar people or objects in a set of videos. Typical methods search
a database which may have thousands of possible of images, thus
consuming large amounts of computational power. However, the
metadata (who/what is in the video or frame) generated by SEVA
can help reduce the search space dramatically to only objects which
are really in the video; in most cases the number of objects in the
video is very small compared to the size of the database.

7. RELATED WORK
SEVA draws from several related research areas, which we survey
here. Due to the overwhelming amount of related work in image
retrieval, annotation, sensor systems, and locationing systems, we
only highlight the most relevant work.
Content-based media retrieval: Searching and retrieving media is
greatly enhanced by textual annotations. The annotations are either
manually entered [13] or automatically generated by a combination
of learning- and vision-based object/face recognition techniques [8,
9, 22, 25, 30, 38]. Manual annotation of each frame or image is
cumbersome and faces the difficulty of imprecise human memory,
and thus it is not suitable for large collections of media archives.
Automatic annotation by the learning and vision-based techniques
is error prone and has high computational requirements.
Sensor Annotation of Multimedia: Several systems annotate im-
ages, videos, and audio with sensor data such as GPS readings,
light readings, temperature readings [1, 4, 7, 14, 29, 36, 37], and
use these sensor data to help media retrieval. Many of these sys-
tems automatically tag images with time and GPS coordinates of
where the image was taken, and then infer other information about
the image later. All of these systems only record two parameters of
video capture—whenandwhere, unlike SEVA which also records
whatobjects are in each video frame, thereby providing a richer set
of annotations.
Sensor Systems: A great deal of recent work has focused on devel-
oping new sensor technologies. Several hardware platforms have
been developed recently, such as the Mica Motes [21], Telos [32],
and the XYZ [26]. These nodes consume anywhere from 10-70mW
of power in active mode, and are designed for portability, extensi-
bility, and research prototyping. RFID, both active and passive,
has significant potential to provide low-cost, short-range, identifi-
cation for many consumer goods and can help identify objects in
SEVA [11].
Locationing Systems: A critical component in SEVA is the lo-
cationing system. Its accuracy, deployability, and cost are crucial
factors in SEVA’s success. The current prototype uses GPS [2],
and the Cricket ultrasound system [33], but there are many other
locationing systems available. Hightower and Borriello provide
an excellent overview of current systems [19]. Additional work



has also been done lately on the SpotON system [20] and LAND-
MARC [31], as locationing systems for RFID tags, providing an-
other locationing system for future SEVA systems.

8. CONCLUSION
This paper presents the design and implementation of an automatic,
sensor-enhanced video annotation and retrieval system named SEVA.
It operates by querying nearby objects for their identities and loca-
tions, extrapolating and filtering those results, and recording this
information with the video stream. Through a large set of exper-
iments we have shown SEVA’s overall effectiveness in tracking
static and moving objects using a moving camera and two differ-
ent locationing systems.
As part of the future work, we intend to integrate the RFID loca-
tioning systems such as SpotON and LANDMARC into SEVA. An-
other interesting work is to develop techniques to infer video’s con-
tent from the context (when, where, and who) produced by SEVA.
We also plan to study the possibility of storing annotations within
video streams via MPEG-7 [28].
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